## Linear Algebra II

19/03/2015, Thursday, 14:00-16:00
$1 \quad(3+8+3+8+8=30 \mathrm{pts})$

## Inner product spaces

Consider the vector space $C[0,1]$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Let $f_{1}, f_{2}, f_{3}$ and $f_{4}$ be given by as follows:

(a) Is the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ an orthonormal set?
(b) Compute $\left\langle f_{i}, f_{j}\right\rangle$ where $i, j \in\{1,2,3,4\}$. (Hint: You may want to use the relationship between the integral of and the area under a curve.)
(c) Find the angle between $f_{1}$ and $f_{2}$.
(d) Apply Gram-Schmidt process to obtain an orthonormal basis for the subspace spanned by $f_{1}, f_{2}$ and $f_{3}$. (Hint: You may want to plot each function the process computes.)
(e) Find the closest function to $f_{4}$ in the subspace spanned by $f_{1}, f_{2}$ and $f_{3}$.

## REQUIRED KNOWLEDGE: Orthogonality, Gram-Schmidt process, least-squares approximation.

## Solution:

1a: Note that

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1}(x) f_{2}(x) d x=\frac{1}{2}
$$

As such, this set is not an orthonormal set.

1b: Straightforward calculations yield:

$$
\begin{aligned}
& \left\langle f_{1}, f_{1}\right\rangle=\int_{0}^{1} d x=1 \\
& \left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{\frac{1}{2}} d x=\frac{1}{2} \\
& \left\langle f_{1}, f_{3}\right\rangle=\int_{0}^{1} f_{3}(x) d x=\frac{1}{2} \\
& \left\langle f_{1}, f_{4}\right\rangle=\int_{0}^{1} f_{4}(x) d x=\frac{1}{4} \\
& \left\langle f_{2}, f_{2}\right\rangle=\int_{0}^{\frac{1}{2}} d x=\frac{1}{2} \\
& \left\langle f_{2}, f_{3}\right\rangle=\int_{0}^{\frac{1}{2}} f_{3}(x) d x=\frac{1}{4} \\
& \left\langle f_{2}, f_{4}\right\rangle=\int_{0}^{\frac{1}{2}} f_{4}(x) d x=0 .
\end{aligned}
$$

Note that

$$
f_{3}(x)= \begin{cases}-2 x+1 & \text { if } 0 \leqslant x \leqslant \frac{1}{2} \\ 2 x-1 & \text { if } \frac{1}{2} \leqslant x \leqslant 1\end{cases}
$$

This results in

$$
\begin{aligned}
\left\langle f_{3}, f_{3}\right\rangle & =\int_{0}^{\frac{1}{2}}(-2 x+1)^{2} d x+\int_{\frac{1}{2}}^{1}(2 x-1)^{2} d x \\
& =\int_{0}^{1}(2 x-1)^{2} d x \\
& =\left.\left(4 \frac{x^{3}}{3}-2 x^{2}+x\right)\right|_{0} ^{1} \\
& =\frac{4}{3}-2+1=\frac{1}{3} \\
\left\langle f_{3}, f_{4}\right\rangle & =\int_{\frac{1}{2}}^{1}(2 x-1)^{2} d x \\
& =\frac{1}{6} \\
\left\langle f_{4}, f_{4}\right\rangle & =\int_{\frac{1}{2}}^{1}(2 x-1)^{2} \\
& =\frac{1}{6}
\end{aligned}
$$

1c: The angle $\theta$ between $f_{1}$ and $f_{2}$ is defined by

$$
\cos (\theta)=\frac{\left\langle f_{1}, f_{2}\right\rangle}{\left\|f_{1}\right\|\left\|f_{2}\right\|}
$$

Thus, we get

$$
\cos \theta=\frac{\frac{1}{2}}{1 \cdot \frac{1}{\sqrt{2}}}=\frac{\sqrt{2}}{2}
$$

As such, the angle between these two functions is 45 degrees.

1d: By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
& u_{1}=\frac{f_{1}}{\left\|f_{1}\right\|} \\
& u_{1}=f_{1} \\
& u_{2}=\frac{f_{2}-p_{1}}{\left\|f_{2}-p_{1}\right\|} \\
& p_{1}=\left\langle f_{2}, f_{1}\right\rangle \cdot f_{1} \\
& =\frac{1}{2} f_{1} \\
& f_{2}-p_{1}=f_{2}-\frac{1}{2} f_{1} \\
& \left\|f_{2}-\frac{1}{2} f_{1}\right\|^{2}=\left\langle f_{2}-\frac{1}{2} f_{1}, f_{2}-\frac{1}{2} f_{1}\right\rangle=\left\langle f_{2}, f_{2}\right\rangle-2 \cdot \frac{1}{2}\left\langle f_{2}, f_{1}\right\rangle+\frac{1}{4}\left\langle f_{1}, f_{1}\right\rangle \\
& \left\|f_{2}-\frac{1}{2} f_{1}\right\|^{2}=\frac{1}{2}-\frac{1}{2}+\frac{1}{4}=\frac{1}{4} \\
& \left\|f_{2}-\frac{1}{2} f_{1}\right\|=\frac{1}{2} \\
& u_{2}=2\left(f_{2}-\frac{1}{2} f_{1}\right)=2 f_{2}-f_{1} \\
& u_{3}=\frac{f_{3}-p_{2}}{\left\|f_{3}-p_{2}\right\|} \\
& p_{2}=\left\langle f_{3}, f_{1}\right\rangle f_{1}+\left\langle f_{3}, 2 f_{2}-f_{1}\right\rangle\left(2 f_{2}-f_{1}\right) \\
& =\frac{1}{2} f_{1}+\left(2 \cdot \frac{1}{4}-\frac{1}{2}\right)\left(2 f_{2}-f_{1}\right) \\
& =\frac{1}{2} f_{1} \\
& f_{3}-p_{2}=f_{3}-\frac{1}{2} f_{1} \\
& \left\|f_{3}-\frac{1}{2} f_{1}\right\|^{2}=\left\langle f_{3}-\frac{1}{2} f_{1}, f_{3}-\frac{1}{2} f_{1}\right\rangle \\
& \left\|f_{3}-\frac{1}{2} f_{1}\right\|^{2}=\left\langle f_{3}, f_{3}\right\rangle-2 \cdot \frac{1}{2}\left\langle f_{3}, f_{1}\right\rangle+\frac{1}{4}\left\langle f_{1}, f_{1}\right\rangle \\
& \left\|f_{3}-\frac{1}{2} f_{1}\right\|^{2}=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12} \\
& \left\|f_{3}-\frac{1}{2} f_{1}\right\|=\frac{1}{2 \sqrt{3}} \\
& u_{3}=2 \sqrt{3}\left(f_{3}-\frac{1}{2} f_{1}\right) .
\end{aligned}
$$




1e: The closest function is given by

$$
\begin{aligned}
p & =\left\langle f_{4}, u_{1}\right\rangle u_{1}+\left\langle f_{4}, u_{2}\right\rangle u_{2}+\left\langle f_{4}, u_{3}\right\rangle u_{3} \\
& =\left\langle f_{4}, f_{1}\right\rangle f_{1}+\left\langle f_{4}, 2 f_{2}-f_{1}\right\rangle\left(2 f_{2}-f_{1}\right)+\left\langle f_{4}, 2 \sqrt{3}\left(f_{3}-\frac{1}{2} f_{1}\right)\right\rangle 2 \sqrt{3}\left(f_{3}-\frac{1}{2} f_{1}\right) \\
& =\frac{1}{4} f_{1}+\left(2 \cdot 0-\frac{1}{4}\right)\left(2 f_{2}-f_{1}\right)+12\left(\frac{1}{6}-\frac{1}{8}\right)\left(f_{3}-\frac{1}{2} f_{1}\right) \\
& =\frac{1}{4} f_{1}-\frac{1}{2} f_{2}+\frac{1}{4} f_{1}+\frac{1}{2} f_{3}-\frac{1}{4} f_{1} \\
& =\frac{1}{4} f_{1}-\frac{1}{2} f_{2}+\frac{1}{2} f_{3} .
\end{aligned}
$$

(a) Let $A$ be a square matrix and $p$ be a polynomial. Show that if $x$ is an eigenvector of $A$ corresponding the eigenvalue of $\lambda$ then $x$ is also an eigenvector of $p(A)$. Find the corresponding eigenvalue.
(b) Let $A$ and $B$ be nonsingular matrices of the same size. Show that $A B$ and $B A$ have the same eigenvalues.

## REQUIRED KNOWLEDGE: Eigenvalues, eigenvectors, similarity.

## SOLUTION:

2a: Since $x$ is an eigenvector corresponding to the eigenvalue $\lambda$, we have

$$
A x=\lambda x
$$

By pre-multiplying by $A$, we get

$$
A^{2} x=A(\lambda x)=\lambda(A x)=\lambda^{2} x
$$

Repeating this argument yields

$$
A^{k} x=\lambda^{k} x
$$

for any positive integer $k$. Now, let $p$ be given by

$$
p(s)=p_{\ell} s^{\ell}+p_{\ell-1} s^{\ell-1}+\cdots+p_{1} s+p_{0}
$$

Note that

$$
\begin{aligned}
p(A) x & =\left(p_{\ell} A^{\ell}+p_{\ell-1} A^{\ell-1}+\cdots+p_{1} A+p_{0} I\right) x \\
& =p_{\ell} A^{\ell} x+p_{\ell-1} A^{\ell-1} x+\cdots+p_{1} A x+p_{0} x \\
& =\left(p_{\ell} \lambda^{\ell}+p_{\ell-1} \lambda^{\ell-1}+\cdots+p_{1} \lambda+p_{0}\right) x \\
& =p(\lambda) x
\end{aligned}
$$

Therefore, $x$ is an eigenvector of $p(A)$ corresponding to the eigenvalue $p(\lambda)$.
2b: Note that

$$
B A=B(A B) B^{-1}
$$

As such, $A B$ and $B A$ are similar matrices. Consequently, they share the same eigenvalues.
(a) Let $A$ be a nonsingular matrix. Show that if $A$ is diagonalizable then so is $A^{-1}$.
(b) Let

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

where $a, b, c$, and $d$ are real numbers. Determine all values of $(a, b, c, d)$ such that $M$ is unitarily diagonalizable.
(c) Let

$$
A=\left[\begin{array}{rr}
p & q \\
-q & p
\end{array}\right]
$$

where $p$ and $q$ are real numbers. Find a unitary diagonalizer for $A$.

## REQUIRED KNOWLEDGE: Diagonalization, unitary matrices, normal matrices.

## Solution:

## 3a:

Approach 1: Observe that if $(\lambda, x)$ is an eigenpair of the matrix $A$ then $\left(\lambda^{-1}, x\right)$ is an eigenpair of $A^{-1}$. This means that the number of linearly independent eigenvectors of $A$ is equal to that of $A^{-1}$. As $A$ is diagonalizable, so must be $A^{-1}$.

Approach 2: If $A$ is diagonalizable, there exist a nonsingular matrix $T$ and a diagonal matrix $D$ such that

$$
A=T D T^{-1} .
$$

Since $A$ is nonsingular, $D$ must be nonsingular too. By inverting $A$, we get

$$
A^{-1}=\left(T D T^{-1}\right)^{-1}=T D^{-1} T^{-1} .
$$

Since the inverse of a diagonal matrix is itself a diagonal matrix, we can conclude that $A^{-1}$ diagonalizable.

3b: A matrix $M$ is unitarily diagonalizable if and only if it is normal, that is $M^{H} M=M M^{H}$. Note that

$$
M^{T} M=\left[\begin{array}{ll}
a^{2}+c^{2} & a b+c d \\
a b+c d & b^{2}+d^{2}
\end{array}\right] \quad \text { and } \quad M M^{T}=\left[\begin{array}{ll}
a^{2}+b^{2} & a c+b d \\
a c+b d & c^{2}+d^{2}
\end{array}\right] .
$$

As such, $M$ is diagonalizable if and only if

$$
a^{2}+c^{2}=a^{2}+b^{2}, \quad a b+c d=a c+b d, \quad \text { and } \quad b^{2}+d^{2}=c^{2}+d^{2} .
$$

These are equivalent to

$$
b^{2}=c^{2} \quad \text { and } \quad a b+c d=a c+b d .
$$

The first holds if and only if $b=c$ or $b=-c$. Substituting these into the second, we get the following condition for unitarily diagonalizability of $M$ :

$$
(b=c) \quad \text { OR } \quad(b=-c \quad \text { AND } a=d)
$$

3c: It follows from the last conclusion that $A$ is unitarily diagonalizable. In order to find such a diagonalizer, we distinguish two cases.
$\mathbf{q}=\mathbf{0}:$ In this case, $A$ is already diagonal. So, the $2 \times 2$ identity matrix is a unitary diagonalizer.
$\mathbf{q} \neq \mathbf{0}$ : We begin first calculating the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{rr}
p-\lambda & q \\
-q & p-\lambda
\end{array}\right]\right)=(p-\lambda)^{2}+q^{2}
$$

Note that

$$
(p-\lambda)^{2}+q^{2}=0 \quad \text { if and only if } \quad p-\lambda= \pm i q
$$

Therefore, the eigenvalues are given by $\lambda_{1}=p+i q$ and $\lambda_{2}=p-i q$. Next, we continue with finding the eigenvectors.

For $\lambda_{1}=p+i q$, we need to solve

$$
\left[\begin{array}{rr}
-i q & q \\
-q & -i q
\end{array}\right] x=0
$$

Since $q \neq 0$, we have

$$
\left[\begin{array}{rr}
-i & 1 \\
-1 & -i
\end{array}\right] x=0
$$

This results in

$$
x=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

For $\lambda_{1}=p-i q$, we need to solve

$$
\left[\begin{array}{rr}
i q & q \\
-q & i q
\end{array}\right] y=0
$$

Since $q \neq 0$, we have

$$
\left[\begin{array}{rr}
i & 1 \\
-1 & i
\end{array}\right] y=0
$$

This results in

$$
y=\left[\begin{array}{c}
-1 \\
i
\end{array}\right]
$$

Note that the matrix

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
i & i
\end{array}\right]
$$

is a unitary matrix and also that

$$
\left[\begin{array}{rr}
p & q \\
-q & p
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
i & i
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
i & i
\end{array}\right]\left[\begin{array}{cc}
p+i q & 0 \\
0 & p-i q
\end{array}\right]
$$

(a) Compute a singular value decomposition of the matrix

$$
M=\left[\begin{array}{rr}
2 & -4 \\
2 & 2 \\
-4 & 0 \\
1 & 4
\end{array}\right]
$$

(b) Find the closest (with respect to Frobenius norm) matrix of rank 1 to $M$.

REQUIRED KNOWLEDGE: Singular value decomposition, lower rank approximation.

## Solution:

4a: Note that

$$
M^{T} M=\left[\begin{array}{rrrr}
2 & 2 & -4 & 1 \\
-4 & 2 & 0 & 4
\end{array}\right]\left[\begin{array}{rr}
2 & -4 \\
2 & 2 \\
-4 & 0 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
25 & 0 \\
0 & 36
\end{array}\right]
$$

Therefore, the eigenvalues of $M^{T} M$ are given by

$$
\lambda_{1}=36 \quad \text { and } \quad \lambda_{2}=25
$$

and hence the singular values of $M$ are given by

$$
\sigma_{1}=6 \quad \text { and } \quad \sigma_{2}=5
$$

Note that

$$
v_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

are the normalised eigenvectors for $\lambda_{1}$ and $\lambda_{2}$, respectively. This results in

$$
V=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Let

$$
u_{1}=\frac{1}{\sigma_{1}} M v_{1}=\frac{1}{6}\left[\begin{array}{r}
-4 \\
2 \\
0 \\
4
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
2
\end{array}\right]
$$

and

$$
u_{2}=\frac{1}{\sigma_{2}} M v_{2}=\frac{1}{5}\left[\begin{array}{r}
2 \\
2 \\
-4 \\
1
\end{array}\right] .
$$

Now, we need to find an orthonormal basis for $\mathcal{N}\left(M^{T}\right)$. Consider the linear system

$$
\left[\begin{array}{rrrr}
2 & 2 & -4 & 1 \\
-4 & 2 & 0 & 4
\end{array}\right] w=0
$$

Clearly, it is equivalent to

$$
\left[\begin{array}{llll}
2 & 2 & -4 & 1 \\
0 & 6 & -8 & 6
\end{array}\right] w=0
$$

Two independent solutions can be given by

$$
w_{1}=\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad w_{2}=\left[\begin{array}{l}
2 \\
4 \\
3 \\
0
\end{array}\right]
$$

To orthonormalize, we can apply Gram-Schmidt process:

$$
\begin{aligned}
& u_{3}=\frac{w_{1}}{\left\|w_{1}\right\|} \\
& u_{3}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2
\end{array}\right] \\
& u_{4}=\frac{w_{2}-p_{1}}{\left\|w_{2}-p_{1}\right\|} \\
& p_{1}=\left\langle w_{2}, u_{3}\right\rangle \cdot u_{3} \\
&=-2 \cdot \frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
0 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
-2 \\
4 \\
0 \\
-4
\end{array}\right] \\
& \\
& w_{2}-p_{1}=\left[\begin{array}{r}
2 \\
4 \\
3 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{r}
-2 \\
4 \\
0 \\
-4
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
8 \\
8 \\
-1 \\
4
\end{array}\right] \\
& u_{4}=\frac{1}{\sqrt{145}}\left[\begin{array}{r}
8 \\
8 \\
8 \\
-1 \\
4
\end{array}\right] .
\end{aligned}
$$

Thus, we have the SVD:

$$
\left[\begin{array}{rr}
2 & -4 \\
2 & 2 \\
-4 & 0 \\
1 & 4
\end{array}\right]=\left[\begin{array}{rrrr}
-\frac{2}{3} & \frac{2}{5} & \frac{1}{3} & \frac{8}{\sqrt{145}} \\
\frac{1}{3} & \frac{2}{5} & -\frac{2}{3} & \frac{8}{\sqrt{145}} \\
0 & -\frac{4}{5} & 0 & -\frac{1}{\sqrt{145}} \\
\frac{2}{3} & \frac{1}{5} & \frac{2}{3} & \frac{4}{\sqrt{145}}
\end{array}\right]\left[\begin{array}{ll}
6 & 0 \\
0 & 5 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

4b: The best rank 1 approximation is given by:

$$
X=\left[\begin{array}{rrrr}
-\frac{2}{3} & \frac{2}{5} & \frac{1}{3} & \frac{8}{\sqrt{145}} \\
\frac{1}{3} & \frac{2}{5} & -\frac{2}{3} & \frac{8}{\sqrt{145}} \\
0 & -\frac{4}{5} & 0 & -\frac{1}{\sqrt{145}} \\
\frac{2}{3} & \frac{1}{5} & \frac{2}{3} & \frac{4}{\sqrt{145}}
\end{array}\right]\left[\begin{array}{ll}
6 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -4 \\
0 & 2 \\
0 & 0 \\
0 & 4
\end{array}\right]
$$

